Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications
نویسندگان
چکیده
Purpose The physicochemical properties of a xenograft are very important because they strongly influence the bone regeneration capabilities of the graft material. Even though porcine xenografts have many advantages, only a few porcine xenografts are commercially available, and most of their physicochemical characteristics have yet to be reported. Thus, in this work we aimed to investigate the physicochemical characteristics of a porcine bone grafting material and compare them with those of 2 commercially available bovine xenografts to assess the potential of xenogenic porcine bone graft materials for dental applications. Methods We used various characterization techniques, such as scanning electron microscopy, the Brunauer-Emmett-Teller adsorption method, atomic force microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and others, to compare the physicochemical properties of xenografts of different origins. Results The porcine bone grafting material had relatively high porosity (78.4%) and a large average specific surface area (SSA; 69.9 m2/g), with high surface roughness (10-point average roughness, 4.47 µm) and sub-100-nm hydroxyapatite crystals on the surface. Moreover, this material presented a significant fraction of sub-100-nm pores, with negligible amounts of residual organic substances. Apart from some minor differences, the overall characteristics of the porcine bone grafting material were very similar to those of one of the bovine bone grafting material. However, many of these morphostructural properties were significantly different from the other bovine bone grafting material, which exhibited relatively smooth surface morphology with a porosity of 62.0% and an average SSA of 0.5 m2/g. Conclusions Considering that both bovine bone grafting materials have been successfully used in oral surgery applications in the last few decades, this work shows that the porcine-derived grafting material possesses most of the key physiochemical characteristics required for its application as a highly efficient xenograft material for bone replacement.
منابع مشابه
Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes--comparison with human bone.
The present work focuses on the physicochemical characterization of selected mineral-based biomaterials that are frequently used in dental applications. The selected materials are commercially available as granules from different biological origins: bovine, porcine, and coralline. Natural and calcined human bone were used for comparison purposes. Besides a classical rationalization of chemical ...
متن کاملRadiographic comparison of the repaired bone in maxillary alveolar cleft of dog by tissue engineering and autogenous bone grafting techniques
BACKGROUND: Dental disease, trauma and maxillofacial surgeries can cause alveolar bone defects. Among different kinds of treatment, autogenous bone grafts is accepted as a golden standard. On the other hand, because of limitation of treatment with autogenous bone grafts, osteogenic cells derived from stem cells are suggested. OBJECTIVES: The aim of this study was to compare the mean density of ...
متن کاملBone response to hydroxyapatites with open porosity of animal origin (porcine [OsteoBiol mp3] and bovine [Endobon]): a radiological and histomorphometric study.
PURPOSE To carry out a radiological and histomorphometric evaluation of bone response to two xenografts of animal origin, one porcine, and the other bovine, inserted in rabbits' tibiae. MATERIAL AND METHODS Twenty New Zealand rabbits weighing 3900-4500 g were used. Twenty bovine bone grafts (Endobon) in granulated form of 500-1000 μm granulometry were inserted in the proximal metaphyseal area...
متن کاملPlatelet-rich plasma as filling material in open sinus lift surgery
Background Many biomaterials are used during the open sinus lift surgery, beneath the elevated scheniderian membrane and maxillary sinus bony floor but the search for Ideal material continues. Methods In the maxillary posterior atrophic ridges with the bone height less than four millimeters the open sinus lift surgery performed. The autologous Platelet-rich plasma (PRF) was used as the sol...
متن کاملAre Bone Allografts Safe and Effective for Today’s Dental Practitioner?
A wide variety of dental procedures, including ridge and sinus augmentation, treatment of bony defects, and extraction socket preservation, may require a bone grafting material. To meet this need, there are many choices available including alloplasts, xenografts, autografts, and allografts. In particular, allografts, being a natural, human biological matrix and readily available have proven cli...
متن کامل